Chapter 11 Outline

- Endocrine Glands and Hormones
- Mechanisms of Hormone Action
- Pituitary Gland
- Adrenal Glands
- Thyroid and Parathyroid Hormones
- Pancreas and Other Endocrine Glands
- Autocrine and Paracrine Regulation
Endocrine Glands

- Are ductless and secrete hormones into bloodstream
- Hormones travel to target cells that contain receptor proteins for it
- Neurohormones are secreted into blood by specialized neurons
- Hormones affect metabolism of targets

Chemical Classification of Hormones

- **Amine** hormones are derived from tyrosine or tryptophan
 - Include NE, Epi, thyroxine, melatonin
- **Peptide hormones**
 - Polypeptide and protein hormones are chains of amino acids
 - Include ADH, GH, insulin, oxytocin, glucagon, ACTH, PTH
 - Glycoproteins include LH, FSH, TSH
- **Steroids** are lipids derived from cholesterol
 - Include testosterone, estrogen, progesterone, aldosterone and cortisol
Hormonal Actions and Interactions

Common Aspects of Neural and Endocrine Regulation
- Both NS and endocrine system use chemicals to communicate
- Difference between NTs and hormones is transport in blood and more diversity of effects in hormone targets
- Some chemicals are used as hormones and NTs
- Targets for both NTs and hormones must have specific receptor proteins
- Must be a way to rapidly inactivate both

Hormone Interactions
- A tissue usually responds to various of hormones
- 2 hormones are synergistic if work together to produce an effect (additive or complementry)
 - Produce a larger effect together than individual effects added together
- A hormone has permissive effect if it enhances responsiveness of a target organ to 2nd hormone
- If action of 1 hormone inhibits effect of another, it is antagonistic
Hormone Levels and Tissue Responses

- **Half-life** is time required for blood level to be reduced by half
- Ranges from mins to hrs for most (days for thyroid hormones)
- Normal tissue responses are produced only when hormones are in physiological range
- High ([pharmacological](#)) doses can cause a number of side effects
 - Probably by binding to receptors of different but closely related other hormones

- **Priming effect (upregulation)** occurs when a hormone induces more of its own receptors in target cells
 - Results in greater response in target cell
- **Desensitization (downregulation)** occurs after long exposure to high levels of hormone
 - Subsequent exposure to this hormone produces a lesser response
 - Due to decrease in number of receptors on targets
- Most peptide hormones have [pulsatile secretion](#) which prevents downregulation

Mechanisms of Hormone Action
Mechanisms of Hormone Action

- Target cell receptors show **specificity, high affinity, and low capacity** for a hormone.
- Lipophilic hormones have receptors in target's cytoplasm and/or nucleus because they can diffuse through plasma membrane.
 - Their target is the nucleus where they affect transcription.
 - Called **genomic action** and takes at least 30 mins.
- Hydrophilic hormones have receptors on the surface of the target cell.
 - These act through 2nd messengers; effects are quick.
 - Some steroids also act on cell surface receptors.
 - Called **nongenomic action**.

Hormone Effects on Gene Activity

Hormones That Bind to Nuclear Receptor Proteins

- Lipid hormones travel in blood attached to carrier proteins.
 - They dissociate from carriers to pass through the plasma membrane of the target.
 - Receptors are called **nuclear hormone receptors**.
Nuclear Hormone Receptors

- Serve as transcription factors when bound to hormone ligands
- Activate transcription
- Constitute a "superfamily" composed of steroid family and thyroid hormone family (which includes vitamin D and retinoic acid)

Nuclear Hormone Receptors

- Have ligand (hormone)-binding and DNA-binding domains
- Binds hormone and translocates to nucleus
- Binds to hormone-response element (HRE) on DNA located adjacent to target gene

Mechanisms of Steroid Hormones

- HRE consists of 2 half-sites
- 2 ligand-bound receptors have to bind to each HRE (dimerization)
- This stimulates transcription of target gene
Mechanism of Thyroid Hormone Action

- Thyroid secretes 90% T₄ (thyroxine) and 10% T₃
- 99.96% of T₄ in blood is bound to carrier protein (thyroid binding globulin - TBG)
- Only free thyroxine and T₃ can enter cells
- Protein bound thyroxine serves as a reservoir
- T₄ converted to T₃ inside target cell
 - T₃ binds to receptor protein located in nucleus

Mechanism of Thyroid Hormone Action

The receptor for T₃:
- T₃ and receptor bind to 1 half-site
- Other half-site binds retinoic acid
- Two partners form heterodimer that activates HRE
 - Stimulates transcription of target gene
Hormones That Use 2nd Messengers

- Water soluble hormones use cell surface receptors because cannot pass through plasma membrane
- Actions are mediated by 2nd messengers
- Hormone is extracellular signal; 2nd messenger carries signal from receptor to inside of cell

Adenylate Cyclase-cAMP

- cAMP mediates effects of many polypeptide and glycoprotein hormones
- Hormone binds to receptor causing dissociation of a G-protein subunit

Adenylate Cyclase-cAMP

- G-protein subunit binds to and activates adenylate cyclase
- Which converts ATP into cAMP
- cAMP attaches to inhibitory subunit of protein kinase
Adenylate Cyclase-cAMP
- Inhibitory subunit dissociates, activating protein kinase
- Which phosphorylates enzymes that produce hormone's effects
- cAMP inactivated by phosphodiesterase

Phospholipase-C-Ca²⁺
- Serves as 2nd messenger system for some hormones
- Hormone binds to surface receptor, activates G-protein, which activates phospholipase C
- Phospholipase C splits a membrane phospholipid into 2nd messengers IP₃ and DAG
 - IP₃ diffuses through cytoplasm to ER
 - Ca²⁺ channels open

Phospholipase-C-Ca²⁺
- Serves as 2nd messenger system for some hormones
- Hormone binds to surface receptor, activates G-protein, which activates phospholipase C
- Phospholipase C splits a membrane phospholipid into 2nd messengers IP₃ and DAG
 - IP₃ diffuses through cytoplasm to ER
 - Ca²⁺ channels open
Phospholipase-C-Ca\(^{2+}\)

- Ca\(^{2+}\) diffuses into cytoplasm and binds to and activates calmodulin
- Ca\(^{2+}\)-Calmodulin activates protein kinases which phosphorylate enzymes that produce hormone's effects

Epinephrine Can Act Via Two 2\(^{nd}\) Messengers

Tyrosine Kinase 2nd Messenger System

- Is used by insulin and many growth factors to cause cellular effects
- Surface receptor is tyrosine kinase
- Consists of 2 units that form active dimer when insulin binds
Tyrosine Kinase 2nd Messenger System

- Activated tyrosine kinase phosphorylates signaling molecules that induce hormone/growth factor effects.

Insulin Action

- Insulin stimulates glucose uptake by means of GLUT-4 carrier proteins.
- 2nd messengers cause vesicles containing GLUT4 transporters to be inserted into plasma membrane.

Pituitary Gland
Pituitary Gland

- Pituitary gland is located beneath hypothalamus at base of forebrain
- Is structurally and functionally divided into anterior and posterior lobes
- Hangs below hypothalamus by **infundibulum**
- Anterior produces own hormones
 - Controlled by hypothalamus
- Posterior stores and releases hormones made in hypothalamus

Posterior Pituitary

- Stores and releases the hormones **vasopressin (ADH)** and **oxytocin** that are made in the hypothalamus
Anterior Pituitary

- Secretes 6 **trophic** hormones that maintain size of targets
- **High blood levels** cause target to hypertrophy
- **Low blood levels** cause atrophy

Growth hormone (GH) promotes growth, protein synthesis, and movement of amino acids into cells

Thyroid stimulating hormone (TSH) stimulates thyroid to produce and secrete T₄ and T₃

Adrenocorticotrophic hormone (ACTH) stimulates adrenal cortex to secrete cortisol, aldosterone

Follicle stimulating hormone (FSH) stimulates growth of ovarian follicles and sperm production

Luteinizing hormone (LH) causes ovulation and secretion of testosterone in testes

Prolactin (PRL) stimulates milk production by mammary glands
Anterior Pituitary

- Release of Anterior Pituitary hormones is controlled by hypothalamic
 - releasing factors
 - inhibiting factors
 - feedback from levels of target gland hormones

Table 1.7: Hypothalamic Hormones Involved in the Control of the Anterior Pituitary

<table>
<thead>
<tr>
<th>Hypothalamic Hormone</th>
<th>Structure</th>
<th>Effect on Anterior Pituitary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticotropin-releasing hormone (CRH)</td>
<td>31 amino acids</td>
<td>Stimulates secretion of adrenocorticotropic hormone (ACTH)</td>
</tr>
<tr>
<td>Somatostatin-releasing hormone (SRH)</td>
<td>18 amino acids</td>
<td>Stimulates secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH)</td>
</tr>
<tr>
<td>Pro-opiomelanocortin (POMC)</td>
<td>Dopamine</td>
<td>Inhibits prolactin secretion</td>
</tr>
<tr>
<td>Neurotensin</td>
<td>14 amino acids</td>
<td>Stimulates secretion of growth hormone</td>
</tr>
<tr>
<td>Hypothalamic-releasing hormone (HRH)</td>
<td>39 amino acids</td>
<td>Stimulates secretion of luteinizing hormone (LH)</td>
</tr>
<tr>
<td>Somatostatin-releasing hormone (SRH)</td>
<td>13 amino acids</td>
<td>Stimulates growth hormone secretion</td>
</tr>
</tbody>
</table>

Anterior Pituitary

- Releasing and inhibiting hormones from hypothalamus are released from axon endings into capillary bed in median eminence.
- Carried by hypothalamo-hypophyseal portal system directly to another capillary bed in A. Pit.
- Diffuse into A. Pit. and regulate secretion of its hormones.
Feedback Control of Anterior Pituitary

- The hypothalamic-pituitary-gonad axis (control system)
- Involves short feedback loop in which retrograde flow of blood and hormones from A. Pit. to hypothalamus inhibits secretion of releasing hormone
- Involves negative feedback of target gland hormones
- And during menstrual cycle, estrogen stimulates "LH surge" by positive feedback

Sex and Reproductive Hormones

- **Gonads** *(testes and ovaries)* secrete steroid hormones testosterone, estrogen, and progesterone
- **Placenta** secretes estrogen, progesterone, hCG, and somatomammotropin

The Ovarian Cycle – 3 phases

- **Follicular Phase** - first ½ of ovarian cycle
 - Follicle development
- **Ovulation** – Midpoint of ovarian cycle
 - Oocyte exits from one ovary
 - Enters the peritoneal cavity
 - Is swept into the uterine tube
- **Luteal Phase** – second ½ of ovarian cycle
 - Remaining follicle becomes a corpus luteum
 - Secretes progesterone
 - Acts to prepare for implantation of an embryo
Ovarian Cycle Summary

The Uterine Cycle
- Series of cyclic phases of the endometrium
- Phases coordinate with the ovarian cycle
- Endometrial phases directed by FSH and LH
- Phases of uterine cycle – 3 phases
 - **Menstrual phase** – days 1-5
 - Stratum functionalis is shed
 - **Proliferative phase** – days 6-14
 - **Secretory phase** – days 15-28

The Uterine Cycle

Menstrual and Ovarian Cycles
Higher Brain Function and Anterior Pituitary Secretion

- Hypothalamus receives input from higher brain centers that can affect Anterior Pituitary secretion
 - e.g. emotional states and psychological stress can affect circadian rhythms, menstrual cycle, and adrenal hormones

Posterior Pituitary

- Stores and releases 2 hormones produced in hypothalamus:
 - **Antidiuretic hormone (ADH/vasopressin)**
 - Promotes H$_2$O conservation by kidneys
 - **Oxytocin**
 - Stimulates contractions of uterus during parturition
 - Stimulates contractions of mammary gland alveoli for milk-ejection reflex

Hypothalamic Control of Posterior Pituitary

- **Supraoptic nuclei** of hypothalamus produce ADH
- **Paraventricular nuclei** produce oxytocin
- Both transported along hypothalamo-hypophyseal tract to posterior pituitary
- Release controlled in hypothalamus by neuroendocrine reflexes
Adrenal Gland

Adrenal Glands
- Sit on top of kidneys
- Each consists of outer cortex and inner medulla
- Which arise differently during development

Adrenal Glands
- Medulla synthesizes and secretes 80% Epinephrine and 20% Norepinephrine
 - Controlled by sympathetic division of ANS
- Cortex is controlled by ACTH and secretes:
 - **Cortisol** which inhibits glucose utilization and stimulates gluconeogenesis
 - **Aldosterone** which stimulate kidneys to reabsorb Na⁺ and secrete K⁺
 - And some supplementary **sex steroids**
Adrenal Medulla
- Hormonal effects of Epinephrine last 10X longer than Norepinephrine
- Innervated by preganglionic Sympathetic fibers
- Activated during "fight or flight" response
 - Causes:
 - Increased respiratory rate
 - Increased HR and cardiac output
 - General vasoconstriction which increases venous return
 - Glycogenolysis and lipolysis

Stress and the Adrenal Gland
- Stress induces a non-specific response called general adaptation syndrome (GAS)
- Causes ACTH and cortisol release

Stress and the Adrenal Gland
- Chronic stress can induce high levels of cortisol that cause a number of negative effects:
 - atrophy of hippocampus (involved in memory)
 - reduced sensitivity of tissues to insulin (insulin resistance)
 - inhibition of vagus nerve activity
 - suppression of growth hormone, thyroid hormone, and gonadotropins
Thyroid Gland

- Is located just below the larynx
- Secretes T4 and T3 which set **Base Metabolic Rate** (BMR) and are needed for growth, development
- A scan of the thyroid 24 hrs. after intake of radioactive iodine (b)

Thyroid Gland

- Consists of microscopic **thymus follicles**
 - Outer layer is **follicle cells** that synthesize T4
 - Interior filled with **colloid**, a protein-rich fluid
Production of Thyroid Hormones

- Iodide (I⁻) in blood is actively transported into follicles and secreted into colloid
- Where it is oxidized to iodine (I₂) and attached to tyrosines of thyroglobulin
- A large storage molecule for T₄ and T₃
- TSH stimulates hydrolysis of T₄ and T₃ from thyroglobulin and then secretion

Diseases of the Thyroid - Goiter

- In absence of sufficient dietary iodide, T₄ and T₃ cannot be made and levels are low
- Low T₄ and T₃ don’t provide negative feedback and TSH levels go up
- Because TSH is a trophic hormone, thyroid gland grows
- Resulting in a goiter
Diseases of the Thyroid

- **Hypothyroid** - People with inadequate T₄ and T₃ levels
 - Have low BMR, weight gain, lethargy, cold intolerance
- **Hyperthyroid** - People with increased T₄ and T₃ levels.
 - Characterized by weight loss, heat intolerance, irritability, high BMR, exophthalmos.

Diseases of the Thyroid

- **Goiter** – Enlargement of thyroid gland due to iodine deficiency
- **Grave’s disease**
 - Autoimmune disease where antibodies act like TSH and stimulate thyroid gland to grow and oversecrete.

Parathyroid Glands

- Are 4 glands embedded in lateral lobes of posterior side of thyroid gland
- Secrete **Parathyroid hormone (PTH)**
- Most important hormone for control of blood Ca²⁺ levels
Parathyroid Hormone

- Release stimulated by decreased blood Ca²⁺
- Acts on bones, kidney, and intestines to increase blood Ca²⁺ levels

Islets of Langerhans

- Are scattered clusters of endocrine cells in pancreas
- Contain alpha and beta cells
Islets of Langerhans

- Alpha cells secrete glucagon in response to low blood glucose
 - Stimulates glycogenolysis and lipolysis
 - Increases blood glucose

Islets of Langerhans

- Beta cells secrete insulin in response to high blood glucose
 - Promotes entry of glucose into cells
 - And conversion of glucose into glycogen and fat
 - Decreases blood glucose