The ANS and Visceral Sensory Neurons

- The ANS—a system of motor neurons
- Innervates
 - Smooth muscle
 - Cardiac muscle
 - Glands

Autonomic and Somatic Motor Systems

Figure 15.2
Divisions of the Autonomic Nervous System

- Sympathetic – “fight, flight, or fright”
 - Activated during exercise, excitement, and emergencies
- Parasympathetic – “rest and digest”
 - Concerned with conserving energy

- Sympathetic and parasympathetic divisions
 - Chains of two motor neurons
 - Innervate mostly the same structures
 - Cause opposite effects

Issue from different regions of the CNS
- Sympathetic—also called the thoracolumbar division
- Parasympathetic—also called the craniosacral division

Anatomical Differences in Sympathetic and Parasympathetic Divisions

Figure 15.3
Anatomical Differences in Sympathetic and Parasympathetic Divisions

- **Length of postganglionic fibers**
 - Sympathetic – *long postganglionic fibers*
 - Parasympathetic – *short postganglionic fibers*
- **Branching of axons**
 - Sympathetic axons – *highly branched*
 - Influences many organs
 - Parasympathetic axons – *few branches*
 - Localized effect

Anatomical Differences in Sympathetic and Parasympathetic Divisions

- **Neurotransmitter released by postganglionic axons**
 - Sympathetic – most release norepinephrine (adrenergic)
 - Parasympathetic – release acetylcholine

Parasympathetic division

- **Preganglionic neurons in the brainstem and sacral segments of spinal cord**
- **Ganglionic neurons in peripheral ganglia located within or near target organs**
The Parasympathetic Division

- Cranial outflow
 - Comes from the brain
 - Innervates organs of the head, neck, thorax, and abdomen
- Sacral outflow
 - Supplies remaining abdominal and pelvic organs

Figure 15.4

Cranial Outflow

- Preganglionic fibers run via:
 - Oculomotor nerve (III)
 - Facial nerve (VII)
 - Glossopharyngeal nerve (IX)
 - Vagus nerve (X)
- Cell bodies located in cranial nerve nuclei in the brain stem
Sacral Outflow

- Emerges from S₂-S₄
- Innervates organs of the pelvis and lower abdomen
- Preganglionic cell bodies
 - Located in visceral motor region of spinal gray matter
- Axons run in ventral roots to ventral rami
 - Form splanchnic nerves
 - Run through the inferior hypogastric plexus

Sympathetic Pathways to Thoracic Organs

![Figure 15.7](image)

The Sympathetic Division

- Basic organization
 - Issues from T₁-L₂
 - Preganglionic fibers form the lateral gray horn
 - Supplies visceral organs and structures of superficial body regions
 - Contains more ganglia than the parasympathetic division
Sympathetic ganglia

- **Sympathetic chain ganglia** (paravertebral ganglia)
- **Collateral ganglia** (prevertebral ganglia)

Sympathetic Trunk Ganglia

- Located on both sides of the vertebral column
- Linked by short nerves into sympathetic trunks
- Joined to ventral rami by white and gray rami communicantes
- Fusion of ganglia → fewer ganglia than spinal nerves

Figure 15.6
Sympathetic Pathways to Thoracic Organs

- Superior cervical ganglion
- Middle cervical ganglion
- Inferior cervical ganglion

Sympathetic trunk (chain) ganglia

Pons

T1

Lesser splanchnic nerve

Greater splanchnic nerve

Eye

- Lacrimal gland
- Nasal mucosa
- Blood vessels; skin (arrector pili muscles and sweat glands)
- Salivary glands

Heart

Lung

- Cardiac and pulmonary plexuses

Liver and gallbladder

Stomach

Spleen

Kidney

Adrenal medulla

Small intestine

Large intestine

Genitalia (uterus, vagina, and penis) and urinary bladder

Celiac ganglion

Inferior mesenteric ganglion

Superior mesenteric ganglion

Lumbar splanchnic nerves

Rectum

Sacral splanchnic nerves

Spinal cord:

- T8–L1

Sympathetic trunk

Ventral root

Thoracic splanchnic nerves

Adrenal Medulla

- Typical adrenal medulla cells
- Epinephrine and norepinephrine
- Adrenal gland
- Adrenal medulla capillaries

Visceral Sensory Neurons

- General visceral sensory neurons monitor:
 - Stretch, temperature, chemical changes, and irritation
- Cell bodies are located in the dorsal root ganglion
- Visceral pain:
 - No pain results when visceral organs are cut
 - Visceral pain results from chemical irritation or inflammation
 - Visceral pain often perceived to be of somatic origin
 - Phenomenon of referred pain
A Map of Referred Pain

Visceral Reflexes

- Visceral sensory and autonomic neurons
 - Participate in visceral reflex arcs
 - Defecation reflex
 - Micturition reflex
 - Some are simple spinal reflexes
 - Others do not involve the CNS
 - Strictly peripheral reflexes

Visceral Reflex Arc
Central Control of the ANS

- Control by the brain stem and spinal cord
 - Reticular formation exerts most direct influence
 - Medulla oblongata
 - Periaqueductal gray matter
 - Control by the hypothalamus and amygdala
 - Hypothalamus—the main integration center of the ANS
 - Amygdala—main limbic region for emotions
 - Control by the cerebral cortex

Figure 15.12

Central Control of the ANS

Communication at subconscious level

- Cerebral cortex (frontal lobe)
- Limbic system (emotional input)
- Hypothalamus
 - Overall integration of ANS, the base
- Brain stem
 - Reticular formation, etc.
 - Regulation of pupil size, respiration, heart, blood pressure, swallowing, etc.
- Spinal cord
 - Urination, defecation, erection, and ejaculation reflexes